
ar
X

iv
:2

50
5.

22
66

0v
4 

 [
cs

.L
G

] 
 2

7 
Ju

n 
20

25

Maximizing Confidence Alone Improves Reasoning

Mihir Prabhudesai∗
Carnegie Mellon University

Lili Chen*

Carnegie Mellon University
Alex Ippoliti*

Carnegie Mellon University

Katerina Fragkiadaki
Carnegie Mellon University

Hao Liu
Carnegie Mellon University

Deepak Pathak
Carnegie Mellon University

Abstract

Reinforcement learning (RL) has enabled machine learning models to achieve
significant advances in many fields. Most recently, RL has empowered frontier
language models to solve challenging math, science, and coding problems. How-
ever, central to any RL algorithm is the reward function, and reward engineering is
a notoriously difficult problem in any domain. In this paper, we propose RENT:
Reinforcement Learning via Entropy Minimization – a fully unsupervised RL
method that requires no external reward or ground-truth answers, and instead uses
the model’s entropy of its underlying distribution as an intrinsic reward. We find
that by reinforcing the chains of thought that yield high model confidence on its
generated answers, the model improves its reasoning ability. In our experiments,
we showcase these improvements on an extensive suite of commonly-used rea-
soning benchmarks, including GSM8K, MATH500, AMC, AIME, and GPQA,
and models of varying sizes from the Qwen, Mistral, and Llama families. The
generality of our unsupervised learning method lends itself to applicability in
a wide range of domains where external supervision is unavailable. Website:
https://rent-rl.github.io/.

1 Introduction

Imagine you’re taking an exam. Once it begins, no new information is available and no external help
can be sought. With only your own reasoning to rely on, how do you tackle a difficult problem?
You might make an initial attempt, assess your confidence in the answer, and revise your reasoning
until you feel sufficiently certain. Of course, confidence is not a guarantee of correctness – but in the
absence of feedback, it is often the only intrinsic signal we have to guide further thought. In such
settings, humans tend to optimize for confidence, or equivalently, to reduce uncertainty. In machine
learning, uncertainty is commonly quantified via entropy – a measure of how peaked or diffuse a
probability distribution is. Language models output distributions over tokens, and the entropy of these
distributions reflects the model’s confidence: lower entropy implies more confident predictions. Yet
despite the growing use of language models in reasoning tasks, current approaches to improvement
still rely heavily on external supervision, rewarding models based on correctness with respect to
ground-truth labels [10, 39]. This dependence is often impractical, particularly in real-world or
open-ended scenarios where supervision is scarce or unavailable.

To address this, we propose RENT: Reinforcement Learning via Entropy Minimization – a fully
unsupervised reinforcement learning method that improves reasoning performance by using the
model’s own confidence as a reward. Specifically, we define the reward as the negative entropy
of the model’s predicted token distributions. This signal is dense, general, and easy to compute,
requiring no ground-truth answers. Importantly, not all parts of the response contribute equally to final
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Figure 1: Overview of RENT: Reinforcement Learning via Entropy Minimization. For each response,
we use the model’s underlying confidence (negative entropy) as a reward for reinforcement learning.
This enables the model to learn without any external reward or ground-truth answers.

performance. Through empirical analysis, we find that minimizing entropy over tokens near the end
of the reasoning chain, especially those corresponding to the final answer, correlates most strongly
with improved accuracy. In contrast, early tokens in the response show little correlation. This suggests
that as the model approaches its final answer, it increasingly relies on its own confidence to guide
reasoning, so encouraging confidence in these final steps is key to improving overall performance.

We demonstrate RENT’s effectiveness across diverse reasoning benchmarks, including GSM8K [6],
MATH500 [14, 25], AMC and AIME [23], and GPQA [33]. Our method scales across model families
(Qwen, Mistral, and Llama) and sizes and consistently improves performance.

2 Related Work

2.1 Reinforcement Learning for Reasoning

Initially, reinforcement learning (RL) for language models was mostly used for learning from human
preferences [5] and, traditionally, the RL optimization was done with algorithms such as PPO [37].
With the capabilities of language models continuing to improve, researchers have begun to explore
the possibility of using RL to improve the performance of language models on reasoning tasks such
as math [6, 14, 23], science [13, 33], or coding [24, 4] problems. In these settings, the model is
prompted to generate a chain-of-thought [51] and final answer, and receives a reward based on how
closely its final answer matches the ground-truth answer. These efforts present RL as an alternative
to search-based approaches to chain-of-thought reasoning such as Tree of Thoughts [56] and Graph
of Thoughts [2]. Related lines of work include training a reward model to give feedback for every
step in the chain of thought, and training RL models to encourage self-correcting behaviors in
language models. Examples of RL methods in this space include Zelikman et al. [59], Singh et al.
[42], Kumar et al. [21], Qu et al. [31], Uesato et al. [46], Lightman et al. [25], Wang et al. [50].
At scale, DeepSeek [10, 39] proposed an open-source model that showed OpenAI o1 [16]-level
reasoning by performing RL in this manner, using a new algorithm GRPO [39].

2.2 Confidence and Calibration

Confidence measures quantify how certain a model is that its generated output is correct [58, 43].
In order to evaluate the confidence of machine learning models, it is necessary also to discuss
calibration [19, 48] - i.e., how aligned those confidences are with actual correctness. As language
models are increasingly trusted to make important decisions, providing users with a reliable confidence
measure would be useful in many situations [8, 27, 47, 15, 17, 12, 43]. As such, researchers have
developed various confidence metrics for modern deep learning models and studied the extent to
which they are calibrated. These include both methods that assume access to the model’s weights [11,
18, 54, 43] and methods that estimate confidence via prompting alone [52, 8, 45, 53, 55]. In our paper,
we use the model’s confidence to iteratively improve its own performance via reinforcement learning.

2.3 Test-Time Adaptation

Test-time adaptation is where a model is updated using data from the test distribution, without
access to ground-truth labels. The goal is to improve performance in scenarios where there is a
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distribution shift between training and testing environments. Methods for adapting without labels
include normalization techniques that recalibrate feature statistics at test time [32, 44, 28, 36, 29]. The
most relevant work to ours is Tent [49], which performs entropy minimization on model predictions
during test time. This approach assumes that predictions on test data should be low in entropy if
the model is well-adapted to the new distribution. Tent builds on earlier work that uses entropy
minimization as a regularization strategy in semi-supervised learning [9, 22, 1] and domain adaptation
contexts [28, 41, 35], where encouraging confident predictions has proven effective for improving
generalization. Recently, TTRL [61] proposed test-time reinforcement learning using majority voting
as a reward. Compared to entropy, majority voting is a sparse reward and much less general; for
example, it cannot be applied to long-form free-response questions.

2.4 Unsupervised Reinforcement Learning

Unsupervised RL trains agents using intrinsic rewards like novelty, entropy, or mutual information,
enabling skill acquisition without extrinsic feedback. Prior methods include ICM and RND for
prediction error [30, 3], APT [26] and ProtoRL [57] for entropy maximization, and DIAYN, APS,
and SMM for skill discovery via mutual information [7, 26, 20]. An interesting observation is
that while exploration methods primarily maximize entropy, we instead minimize it by reinforcing
high-confidence outputs, and find that for language models, this leads to better reasoning performance
without any external supervision.

3 Method

3.1 Reinforcement Learning for Language Models

The goal of reinforcement learning (RL) is to train a policy which generates actions that maximize the
cumulative expected reward. In the context of modern language models, the policy π is a language
model and the actions ypred are sampled from the distribution over a discrete vocabulary. The task
is formulated as a one-step RL problem in which the model generates ypred = π(x), where x is
sampled from the dataset D = {(x, ytarget)}, and receives some reward for the generation. Typically,
the ground-truth answer ytarget is used to give the model a reward r = R(ytarget, ypred). One reward
function which is currently used is simple string matching, where R(ytarget, ypred) = 1{ytarget = ypred}.
Our work focuses on instead doing unsupervised reinforcement learning, which does not require
external supervision for the reward. Specifically, ytarget is not used in the reward r = R(ypred) and we
do not assume access to this at any point in training.

3.2 Group Relative Policy Optimization (GRPO)

To optimize the policy, we adopt GRPO [39], a reinforcement learning algorithm that emphasizes
relative rather than absolute performance. Instead of directly maximizing the reward of the current
policy, GRPO evaluates the policy in relation to a group of baseline policies. This comparison helps
improve learning stability, especially in settings with noisy or unsupervised reward signals.

Let π denote the current policy, and let {π1, π2, . . . , πK} be a fixed or evolving set of reference
policies. The GRPO objective is defined as:

L(π) = Eypred∼π(x) [R(ypred)]−
1

K

K∑
i=1

Eypred∼πi(x) [R(ypred)]

The first term represents the expected reward under the current policy π, while the second term
computes the average reward across the reference group. The learning signal is thus the improvement
in reward relative to these baselines. For more details, we refer the reader to Shao et al. [39].

3.3 Entropy Reward

For a given prompt x, the model generates a response ypred = ypred,1, · · · , ypred,T = π(x), where
T is the number of tokens in the response. At each token t ∈ {1, . . . , T}, the model outputs a
probability distribution pt over the vocabulary V , i.e., pt(v) = P (yt = v | x, y<t). The entropy of
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this distribution measures the model’s uncertainty in predicting the next token and is given by:

H(pt) = −
∑
v∈V

pt(v) log pt(v)

To compute the total entropy of the response, we average the entropies across all tokens. The total
entropy H(π(x)) provides a measure of the overall uncertainty in the model’s response. Higher
entropy indicates greater uncertainty or more diverse token predictions, while lower entropy suggests
more confident and peaked distributions at each token. We use the negative entropy of the predicted
token distribution as a reward signal:

R(ypred) = −H(π(x)) =
1

T

T∑
t=1

∑
v∈V

pt(v) log pt(v)

This reward encourages the model to produce more confident and peaked distributions over the
vocabulary, effectively promoting lower uncertainty in its predictions. Within the RL framework, the
learning objective becomes maximizing the expected reward over the data distribution:

max
π

Ex∼D
[
Eypred∼π(x) [R(ypred)]

]
By optimizing this objective, the model learns to generate responses with lower entropy without
relying on external supervision or labeled target responses.

4 Experiments

4.1 Experimental Setup

Benchmarks. We train a model with reinforcement learning on each dataset independently. We
conduct our experiments on the following commonly-used benchmarks for evaluating the reasoning
capabilities of large language models:

• GSM8K [6]: GSM8K contains 8792 grade-school math word problems. The train set
contains roughly 7473 problems and the test set contains roughly 1319 problems.

• MATH500 [14, 25]: MATH [14] is a dataset containing competition math problems spanning
seven categories. It contains 12500 problems, of which 7500 are used for training and 5000
are used for testing. MATH500 [25] is a subset of the MATH test set created by OpenAI by
sampling uniformly at random from the test set.

• AMC [23]: The American Mathematics Competitions (AMCs) are competitions given to
high school students. The specific dataset we use is comprised of 83 problems from the
2022 and 2023 AMC12 exams, which are given to 12th grade students. Although the
original problems are in multiple-choice format, the dataset presents modified versions of
the problem which expect an integer solution.

• AIME24 [23]: The American Invitational Mathematics Examination (AIME) is a prestigious
high school mathematics competition. It consists of 15 questions meant to be completed in
3 hours and is given to top-scoring students on the AMC exam. Each year, there are two
versions of the exam which consist of distinct questions. We train on the 30 problems from
both versions of the 2024 exam.

• GPQA [33]: GPQA is a dataset of 448 multiple-choice problems in biology, physics, and
chemistry at the PhD level. They are intended to be "Google-proof" in the sense that they
require advanced reasoning skills.

Since we are interested in test-time adaptation, and we do not assume access to the ground-truth an-
swer, we use the same dataset for both training and evaluation. Additionally, some of the benchmarks
do not have standardized train sets. The exception is GSM8K, where we use the standard train and
test sets; this shows that generalization does occur and RENT is not merely overfitting to the test set.

Models. To showcase the generality of our method, we conduct experiments on a wide range of
models from different model families and of varying parameter counts. We test on Mistral-7B-
Instruct-v0.3, Llama3.1-8B-Instruct, Qwen2.5-1.5B-Instruct, Qwen2.5-Math-1.5B-Instruct, Qwen2.5-
7B-Instruct, and Qwen2.5-Math-7B-Instruct.
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Note: Error bars may be large as they indicate the standard deviation over the samples, not training seeds. 

Figure 2: Performance on GSM8K, MATH500, AMC, AIME, and GPQA. The standard deviations
reported are over 5, 5, 32, 64, and 10 samples, respectively. Across benchmarks and models, we
find that entropy minimization alone is an effective reward for improving the reasoning ability of
language models. All models are Instruct models; the "Instruct" is omitted for brevity.

Implementation details. For the RL optimization we use GRPO [39] with a learning rate of 1×10−6

and the Adam optimizer. The batch sizes and sampling hyperparameters may vary among models
and datasets. We provide a full list of hyperparameters in the Appendix.

4.2 Main Results

Figure 2 shows the performance of models before and after entropy minimization on GSM8K,
MATH500, AMC, AIME24, and GPQA. We report standard deviations reported are over 5, 5, 32, 64,
and 10 samples, respectively. Note that all models are Instruct models (e.g., Qwen2.5-1.5B refers to
Qwen2.5-1.5B-Instruct). Across model families, model sizes, and benchmarks, entropy minimization
allows large language models to improve their reasoning skills, without any external supervision.
On the Math models such as Qwen2.5-Math-1.5B and Qwen2.5-Math-7B, the base model often
struggles at following instructions and therefore the initial score is zero or near zero, and therefore the
boost from entropy minimization is quite large. On models that are already proficient at instruction
following, we can still see strong performance improvements from entropy minimization. Given the
potential pitfall of overconfidence in language models, we performed extensive experimentation to

5



MATH500

AMC

Figure 3: Accuracy and confidence over the course of training. The trends indicate that accuracy and
confidence are indeed highly correlated and therefore it is natural to use confidence as a reward.
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Figure 4: Evaluation (by computing correlation between accuracy and confidence) of various strategies
for selecting which tokens to minimize the entropy over. We find the highest correlation between
accuracy and confidence in the last few tokens of the response.

ensure empirically that entropy minimization is a robust and generalizable reward function across
datasets and models.

4.3 Is It Just Formatting?

It is a well-known issue with reasoning benchmarks that language models can lose points simply
because they do not know how to put their answers in the right format. For example, MATH500
expects final answers to be placed in "boxed". A nontrivial amount of engineering effort has gone into
both designing prompts that encourage correct formatting and implementing parsers that effectively
extract answers from language model responses, in attempts to mitigate this issue. Therefore, one
might wonder if, instead of learning to perform complex reasoning, RENT merely encourages the
model to put its answers in the right format. Table 1 shows that this is not the case. Models trained
with the RENT reward outperform only using a format reward, which simply assigns a binary reward
based on whether the correct format is followed in the response. In some cases, the performance
of our method is similar to (or even slightly worse than) just using format reward, but of course it
is expected that unsupervised RL methods might not always lead to significant improvements. For
example, if the benchmark is extremely easy and the model only needs to learn the right format to
achieve near-perfect scores, RENT would not outperform format reward. Or, if the benchmark is
so hard that it is beyond the model’s capabilities altogether, neither method would perform well.
However, across datasets and model sizes, we find a consistent improvement over using the format
reward and this assures us that the model is actually learning to think through difficult problems and
improve its ability to reason.
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Table 1: Comparison to RL with a format reward. The best result on each benchmark is indicated in
bold. RENT generally outperforms only using a format reward.

GSM8K MATH500 AMC AIME GPQA

Mistral-7B-Instruct-v0.3
Baseline 0.381 0.147 0.049 0.002 0.179
w/ Format reward only 0.393 0.150 0.051 0.015 0.240
w/ RENT (Ours) 0.492 0.168 0.068 0.033 0.267

LLama3.1-8B-Instruct
Baseline 0.857 0.496 0.221 0.061 0.206
w/ Format reward only 0.866 0.533 0.265 0.086 0.282
w/ RENT (Ours) 0.859 0.548 0.339 0.082 0.332

Qwen2.5-1.5B-Instruct
Baseline 0.745 0.548 0.251 0.026 0.247
w/ Format reward only 0.754 0.558 0.259 0.054 0.271
w/ RENT (Ours) 0.748 0.597 0.298 0.072 0.267

Qwen2.5-Math-1.5B-Instruct
Baseline 0.852 0.744 0.452 0.092 0.244
w/ Format reward only 0.857 0.756 0.490 0.117 0.276
w/ RENT (Ours) 0.863 0.810 0.504 0.145 0.285

Qwen2.5-7B-Instruct
Baseline 0.906 0.762 0.423 0.110 0.311
w/ Format reward only 0.913 0.774 0.458 0.156 0.338
w/ RENT (Ours) 0.911 0.823 0.518 0.270 0.365

Qwen2.5-Math-7B-Instruct
Baseline 0.956 0.834 0.495 0.143 0.225
w/ Format reward only 0.957 0.873 0.560 0.154 0.340
w/ RENT (Ours) 0.967 0.882 0.591 0.167 0.400

4.4 Correlation Between Entropy and Accuracy

Figure 3 shows the accuracy and confidence throughout training Qwen2.5-Math-7B and Qwen2.5-
7B-Instruct on the AMC and MATH500 datasets respectively. Critically, as the model improves its
confidence via RENT, the accuracy of the model improves as well. This demonstrates the significant
correlation between answer confidence and answer accuracy, supporting our initial hypothesis.

4.5 Comparison to Concurrent Work

In this section, we compare RENT to concurrent papers which use intrinsic rewards. We evaluate on
GSM8K, MATH500, AMC, AIME, and GPQA and run all experiments with Qwen2.5-7B-Instruct as
the baseline model. Table 2 shows comparisons to the following methods:

• Test-Time Reinforcement Learning (TTRL) [61] assigns a reward of 1 to the majority answer
and 0 to all other answers. In our experiments, we reimplemented this majority voting
reward in our codebase.

• Intuitor [60] uses the forward KL divergence between a uniform distribution and the model’s
distribution as the reward. In contrast, we use entropy, which is the reverse KL divergence
from the uniform distribution. Intuitor is mode-seeking while RENT is mode-covering. We
ran the publicly available Intuitor code (which is also implemented on top of verl framework
[40]) with the same batch size, epochs and evaluation strategy as RENT for fair comparison.

• Shao et al. [38] suggested that even random or "spurious" rewards could be used to improve
reasoning. To compare against spurious rewards, we modify our code to set the reward for
every generation randomly to 0 or 1 with equal probability. Intuitively, we believe spurious
rewards might work because gradients from correct examples contribute to learning, while
gradients from incorrect examples might cancel each other out. Our hypothesis is supported
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by work such as Rolnick et al. [34], which shows that learning can still happen even when
diluting datasets with incorrect labels.

Empirically, we find that RENT is the best of the four methods on average. Compared to TTRL and
Intuitor, performance is similar on most benchmarks except AIME, where RENT outperforms both by
a large margin. This is especially interesting since AIME is the hardest benchmark in our evaluations
(i.e., the initial accuracy of the model is the lowest). Spurious rewards are not competitive with the
other three methods; we conclude that random reward values are not enough and it is indeed beneficial
to use meaningful unsupervised rewards that explicitly encourage some measure of confidence.

Table 2: Comparison of RENT with three concurrent papers: TTRL [61], Intuitor [60], and Spurious
Rewards [38]. The best result on each benchmark is indicated in bold. RENT is the best-performing
method on MATH500, AIME, GPQA, and is the best on average.

GSM8K MATH500 AMC AIME GPQA Average

Qwen2.5-7B-Instruct
w/ TTRL 0.933 0.822 0.521 0.172 0.346 0.559
w/ Intuitor (forward KL) 0.929 0.783 0.525 0.200 0.337 0.555
w/ Spurious Rewards 0.910 0.774 0.459 0.156 0.342 0.528
w/ RENT (Ours) 0.911 0.823 0.518 0.270 0.365 0.577

4.6 Qualitative Samples

Table 3 shows a qualitative sample from GSM8K and Table 4 shows a qualitative sample from AIME.
The qualitative samples verify that the model indeed learns meaningful reasoning skills via entropy
minimization. It is not merely learning to format its answer correctly, or otherwise collapsing to some
other reward-hacking behavior.

Table 3: The model splits the problem into its key steps and correctly calculates the target age

Prompt system
Please reason step by step, and put your final answer within \boxed{}. user
Jaymee is 2 years older than twice the age of Shara. If Shara is 10 years old,
how old is Jaymee? Let’s think step by step and output the final answer within
"\boxed{}".
assistant

Response To determine Jaymee’s age, we need to follow these steps:
1. Identify Shara’s age.
2. Calculate twice Shara’s age.
3. Add 2 years to twice Shara’s age.
Step 1: Shara’s age is given as 10 years old.
Step 2: Twice Shara’s age is calculated as:

2× 10 = 20

Step 3: Jaymee is 2 years older than twice Shara’s age, so we add 2 years to 20:

20 + 2 = 22

Therefore, Jaymee is 22 years old.

4.7 Which Tokens to Minimize Entropy Over

We investigated which response tokens are the best to minimize entropy over. To do this, we evaluated
the following response token selection strategies:

• last chunk - split the response into k chunks, and select all tokens in the last chunk
• first chunk - split the response into k chunks, and select all tokens in the first chunk
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Table 4: The model identifies the geometric series and succinctly soles the problem afterwards

Prompt system
Please reason step by step, and put your final answer within \boxed{}.
user
The infinite product

3
√
10 · 3

√
3
√
10 ·

3

√
3

√
3
√
10 · · ·

evaluates to a real number
√
m. What is the value of m? Let’s think step by

step and output the final answer within \boxed{}.
assistant

Response To find the value of the infinite product 3
√
10 · 3

√
3
√
10 · 3

√
3
√

3
√
10 · · ·, we can

express each term in the product as a power of 10.
The first term is 3

√
10 = 101/3. The second term is 3

√
3
√
10 =

(
101/3

)1/3
=

101/9. The third term is
3

√
3
√

3
√
10 =

(
101/9

)1/3
= 101/27. And so on.

The infinite product can be written as:

101/3 · 101/9 · 101/27 · · · = 101/3+1/9+1/27+···.

The exponent is an infinite geometric series with the first term a = 1
3 and

common ratio r = 1
3 . The sum S of an infinite geometric series is given by:

S =
a

1− r
=

1
3

1− 1
3

=
1
3
2
3

=
1

2
.

So the infinite product evaluates to:

101/2 =
√
10.

Thus, the value of m is 10. The final answer is:

10

• last 10 tokens - select the last k response tokens

• random - select k random tokens from the response

• after </think> - select all tokens after the thought process (after the "</think>" tag)

• after \boxed{ - select all tokens after the boxed answer

• id_match_last - select the tokens in the model’s final answer

• id_match_all - select all tokens tokens in the model’s final answer and any previous
occurrences

• after = - minimize all tokens after the equality symbol ("=")

Figure 4 shows the initial correlation between negative entropy and accuracy for each of these
strategies on three datasets. While most token selection strategies do result in a positive correlation
between confidence and accuracy, we note that the "last chunk" strategy has a significantly higher
correlation compared to the "first chunk" strategy. This suggests that the most important tokens
to minimize entropy over are tokens that occur later in the response. Furthermore, based on the
low correlation results from the "id_match_last" and "id_match_all" strategies, we find that it
is not sufficient to simply minimize the entropy of the final answer tokens; this suggests that,
counterintuitively, the token-level confidence of the final answer tokens is not well-calibrated to its
true response confidence/accuracy.
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5 Limitations

Fundamentally, unsupervised learning alone is relatively limited compared to methods which are
able to use external supervision for learning. Therefore, it is not surprising that our method is
not able to match the performance of methods that have access to the ground-truth answers. It is,
of course, a possibility for the model to be confidently wrong. Overconfidence is a well-known
issue with language models and these calibration errors can cause RENT to fail catastrophically. It
could be dangerous to deploy such an unsupervised learning method in the real world without any
safeguards. However, we generally find empirically that confidence does correlate with accuracy and
the performance does improve by using confidence alone. This indicates that even if the model is
overconfident on some answers, it is well-calibrated overall.

6 Conclusion

We presented RENT, an unsupervised reinforcement learning method which uses entropy as a reward.
In our experiments, we showed that by simply minimizing entropy, we can improve the reasoning
performance of language models on GSM8K, MATH500, AMC, AIME, and GPQA. Our reward
function is general and can be applied on a wide range of domains. We are excited about the possibility
of using entropy minimization and, more broadly, unsupervised reinforcement learning to improve
the capabilities of machine learning models in regimes where external supervision is unavailable.
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A Hyperparameters

A full list of hyperparameters can be found in Table 5.

Table 5: Hyperparameters.

Hyperparameter Value

Max prompt length 1024
Max response length 3072
Batch size 64 GSM8K

500 MATH500
80 AMC
30 AIME
64 Countdown
196 GPQA

Policy mini batch size 32 GSM8K
32 MATH500
80 AMC
30 AIME
32 Countdown
32 GPQA

Policy micro batch size per GPU 8
Learning rate 1× 10−6

Weight decay 0.01
Learning rate warmup Constant
Optimizer Adam
Temperature 1.0 for train

0.8 for validation
Top k -1
Top p 1
Number of samples per example n 5
Remove padding True
Use KL loss True
KL loss coefficient 0.001
Clip ratio 0.2
Grad clip 1.0
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